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Abstract  

 

The goal of the current research was to measure and understand cognitive distraction 

stemming from voice -based technologies in the vehicle. Three controlled experiment s 

evaluated  1) a baseline single -task condition, 2) issuing simple voice-based car commands, 

3) listening to e -mail/text messages read by a ònaturaló pre-recorded human voice, 4) 

listening to e -mail/text messages read by a òsyntheticó computerized text-to-speech system, 

5) listening and composing replies to e -mail/text messages read by a ònaturaló voice, 6) 

listening and composing replies to e -mail/text messages read by a òsyntheticó voice, 7) 

interacting with a menu -based system with perfect reliability, 8),  interacting with a menu -

based system with moderate reliability, and 9) using òhands-freeó Siri to listen to and send 

text messages, update Facebook or Twitter status, and modify and review calendar 

appointments . Because each task allowed the driver to kee p his or her eyes on the road and 

hands on the steering wheel, any impairment to driving must be caused by the diversion of 

attention from the task of operating the motor vehicle. We used a combination of primary -

task, secondary -task, subjective, and psychophysiological indices to assess the mental 

workload  of the driver using these voice-based technologies. The data extend the rating 

system for cognitive distraction  developed by Strayer et al., (2013 ). The new ratings  suggest 

that some voice-based interactions in the vehicle may have unintended consequences that 

adversely affect traffic safety . 
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Introduction  

 

Background  
 

Driver distraction, defined as òthe diversion of attention away from activities critical for safe 

driving toward a competing activityó (Regan, Hallet , & Gordon, 2011; see also Engström, et al., 

2013; Regan & Strayer, 2014) , is increasingly recognized as a significant source of injuries and 

fatalities on the roadway.  Indeed, a recent video analysis of crashes involving teen drivers found 

that 50  percent of the crashes involved driver distraction of one form or another (McGehee,  in 

preparation ). Other  researchers have estimated that driver distraction and inattention account 

for somewhere between 25  percent and 75 percent of all crashes and near crashes (e.g., Dingus et 

al., 2006; Ranney, et al. , 2000; Sussman, et al. , 1985; Wang, Knipling, & Goodman, 1996) . 

 

Driver distraction can arise from visual /manual  interference , for example when a driver 

takes his or her eyes off the road to interact with a device. Impairments also come from 

cognitive sources of distraction when attention is withdrawn from the processing of 

information necessary for the safe operation of a motor  vehicle.  In the  latter case, the 

driverõs eyes may be on the roadway and his or her  hands on the steering wheel, but he or 

she may not be attending to the information critical to safe driving .   

 

The National Highway Safety Traffic Administration (NHTSA) is in the process of 

developing voluntary  guidelines to minimize driver distraction created by electronic 

devices. There are three phases to the NHTSA guidelines. The Phase 1 guidelines,  entered 

into the Federal Register on March 15, 2012 , address visual -manual interfaces for devices 

installed by vehicle manufactures . The Phase 2 guidelines , scheduled for release sometime 

in 2014,  will address visual/manual interfaces for portable and aftermarket  electronic 

devices. Phase 3 guidelines  (forthcoming)  will address voice-based auditory interfaces  for 

devices installed in vehicles and for portable aftermarket devices .  

 

In order to allow drivers to maintain their eyes on the driving environment , nearly every 

vehicle sold in the US and Europe can now be optiona lly equipped with a voice-based 

interface.  Using voice commands, drivers can access functions as varied as voice dialing , 

music selection, GPS destination entry, and even climate control . Voice activated features 

may seem to be a natural development in vehicle safety that requires  little  justification.  

However , a large and growing body of literature cautions that auditory/vocal tasks may 

have unintended consequences that adversely affect traffic safety . What has become clear is 

th at synthetic speech interactions can lead to surprisingly high levels of cognitive workload , 

well beyond that of natural conversation with another human  (e.g., Strayer et al., 2013) . 

 

Cognitive distraction from voice -based interactions is difficult to asse ss because of the 

problems associated with observing what a driverõs brain (as opposed to hands or eyes) is 

doing. Studies have found that when drivers divert attention to an engaging secondary task  

such as talking on a cellular phone, visual scanning is disrupted ( Recarte & Nunes, 2000; 

Tsai et al., 2007; Victor, Harbluk, & Engström, 2005; Reimer, 2009 ), prediction of hazards 

is impaired (Taylor et al., 2013; Strayer et al., 2013), identification of objects and events in 

the driving environment is retarde d (Strayer & Drews, 2007; Strayer, Drews, & Johnston, 

2003), decision for action is altered (Cooper et al., 2009, Drews, Pasupathi, & Strayer, 

2008), and appropriate reactions are delayed (Caird et al., 2008; Horrey & Wickens, 2006).  
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Phase I  
 

In the first phase of our research, we developed a framework for assessing cognitive 

distraction in the vehicle  (Strayer et al., 2013) . The procedure involved comparing eight 

secondary-task conditions  in three separate experiments. The first experiment served as a 

control in which participants performed the different tasks without the concurrent operation 

of a motor vehicle. In the second experiment, participants performed the same tasks while 

operating a high -fidelity driving simula tor. In the third experiment, participants performed 

the tasks while driving an instrumented vehicle in a residential section of a city.  We used a 

combination of primary -task, secondary -task, subjective, and psychophysiological indices of 

mental workload t o develop a rating system of cognitive distraction where non -distracted 

single-task driving anchored the low -end (Category 1) , and the mentally demanding 

Operation Span ( OSPAN) task anchored the high -end (Category 5) of the scale.  The workload 

ratings for the eight tasks are presented in Figure 1. In the figure, it is evident that some 

activities, such as listening to the radio or an audio book, were not very distracting. Other 

activities, such as conversing with a passenger or talking on a hand -held or han ds-free cell 

phone, were associated with moderate/significant increases in cognitive distraction. Finally, 

there are in -vehicle activities, such as using a speech -to-text system to send and receive text 

or e-mail messages, which produced a relatively high level of cognitive distraction.  

 
Figure 1. The cognitive distraction scale developed in Phase I of the research  

 

The speech-to-text system that we evaluated read incoming text/e -mail messages using a 

commercially available computerized text -to-speech reader (NaturalReader 10.0) and a 

speech-recognition system with perfect reliability was implemented in which there was no 

requirement to review, edit, or correct garbled speech -to-text translations. Consequently, 

drivers did not need t o take their eyes of f the road or their hand off the steering wheel when 

making t hese voice-based interactions. Nevertheless, this condition received a Category -3 

rating on the cognitive distraction scale , a level significantly higher than more traditional  

voice-based interac tions on the cell phone.  This highlights the need to better understand 

auditory/vocal interactions  in the vehicle . 
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Research Objectives  
 

The current research was designed to address four important issues related to voice -based 

interactions in the vehicle. First, what is the source of the workload associated with usin g 

speech-based e-mail/texting? This activity involves both listening to messages (primarily a 

comprehension task) and in some instances speaking to create a reply (involving both 

comprehension and speech production). How much of the increase in workload from a 

single -task baseline can be attributed to speech comprehension and how much to speech 

production? This issue has practical implications for the design of systems that allow the 

driver to li sten to messages with or without the possibility of crafting a reply. In addition, 

current speech -based systems use òsyntheticó computerized speech to read messages to the 

driver. How does the quality of the speech generated by the computer impact the driv erõs 

workload compared to situations where the message is delivered with a ònaturaló pre-

recorded human voice? This issue also has practical implications because were meaningful 

differences between natural and synthetic speech observed, it would suggest th at 

refinements to the text -to-speech technology might help to reduce cognitive workload when 

drivers make voice-based interactions in the vehicle. To test these issues, we employed a 

factorial design where natural vs. synthetic speech was crossed with cond itions where the 

driver listened to messages without generating a reply vs. conditions where the driver 

listened and crafted a reply to messages where it was required.  

 

A second question concerns the use of voice commands to control systems in the vehicle  

such as climate control and infotainment systems.  Given that car commands are often 

short , scripted,  and infrequent utterances, do they compare favorably with an activity like 

listening to an audio -book or talking on a cell phone?  The use of voice commands in the 

vehicle  is now ubiquitous in newer models and the user interface in  the different systems is 

known to vary considerably. Does the mental workload associated with  the different device 

manufacture rs differ, or are they all es sentially the same? If the systems do differ, are the 

differences negligible or are they striking?    

 

Third, do menu -based systems that support navigation (e.g., locate the nearest ATM  or gas 

station ) incur a significant cost of concurrence and if so, how do they compare with other  in -

vehicle activities ? Given that menu -based systems offer a limited selection of alternatives 

and a restricted set of responses, it is possible that the associated workload may be lower 

than the speech -to-text e -mail/texting system tes ted by Strayer et al., (2013). We also 

examined the  extent to which the reliability of the menu -based interface affect ed 

distraction . In particular, w e contrasted a menu -based system with perfect reliability with 

a system with moderat e reliability, the latter being more representative of current in -

vehicle systems. How does the reliability of the menu -based system impact cognitive 

workload ? What factors could be adopted to reduce the working memory burden of the 

driver using these voice-based menu systems? 

 

Finally, advanced voice recognition systems such as Appleõs Siri  offer the potential for the 

driver to issue commands and q ueries using natural language. Does this sort of voice-based 

interface reduce the level of cognitive workload compared to the speech -to-text system 

evaluated by Strayer et al., (2013)? Perhaps th e natural language interface is similar in 

cognitive demand to that of a cell phone conversation. Based upon discussion with technical 

staff at Apple,  we customized Siri so that the system was completely hands - and eyes-free.  
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To create a completely hands -free version, a lapel microphone was clipped to the driverõs 

collar and they activated Siri with the command òHello Siri ,ó at which point a researcher  

manually activate the device. The driver neither looked at nor made physical contact with the 

iPhone dur ing these interactions. Therefore, any differences from the single -task baseline 

provide a pure measure of the cognitive workload associated with use of the system.  

 

In this report, we present the results from three ex periments designed to systematically 

measure cognitive workload associated with voice -based interactive technologies in the 

automobile. The first experiment served as a control in which participants performed nine 

different tasks without the concurrent ope ration of a motor vehicle. In the second 

experiment, participants performed the same nine tasks while operating a high -fidelity 

driving simulator. In the third experiment, participants performed the nine tasks while 

driving an instrumented vehicle in a res idential section of a city.   

 

In each of the three experiment, the order of the nine tasks was counterbalanced and the 

tasks involved 1) a baseline single -task condition (i.e., no concurrent secondary task), 2) 

issuing simple voice-based car commands, 3) listening to e -mail/text messages read by a 

ònaturaló pre-recorded human voice , 4) listening to e -mail/text messages read by a 

òsyntheticó computerized text-to-speech system, 5) listening and composing replies to e -

mail/text messages read by a ònaturaló voice, 6) listening and composing replies to e -

mail/text messages read by a òsyntheticó voice, 7) interacting with a menu -based navigation  

system with perfect reliability , 8) interacting with a menu -based navigation system with 

moderate reliability, and 9 ) using òhands (and eyes)-freeó Siri to listen to and send text 

messages, update Facebook or Twitter status, and modify and  review calendar 

appointments. Note that condition 6  of the current research  is identical to the speech -to-

text condition used by Straye r et al., (2013) , thereby providing a direct comparison between 

the two research projects.  

 

It is important to note that e ach task allowed  driver s to keep their eyes on the road and 

both hands on the steering wheel so that any impairment to driving must stem from 

cognitive sources associated with the diversion of attention from the task of operating the 

motor vehicle. Based upon prior research (Stra yer et al., 2013), these tasks were 

hypothesized to reflect increasing levels of cogniti ve workload. The parallel construction of 

the experimental protocol allows a direct comparison with other in -vehicle secondary tasks 

(e.g., listening to a radio, listen ing to an audio -book, conversing on a cell phone, etc.)    

 

In each of the three experiments described below, we used a combination of performance 

indices to assess mental workload including reaction time and accuracy in response to a 

peripheral light detec tion task (the DRT task: ISO, 2012), subjective workload measures 

from the NASA Task Load Index (NASA TLX: Hart & Staveland, 1988)  and 

psychophysiological measures associated with either the electro-encephalographic (EEG) or 

electrocardiographic  (ECG) acti vity  of the participant . We also obtained primary -task 

measures of driving in experiments using the driving simulator and instrumented vehicle.  

 

After describing the methods and results of each study in greater detail, we report  both 

multivariate and meta-analy tic analyses  that integrate  the different dependent measures 

across the three studies to provide an overall cognitive distraction metric for each of the 

voice-based interactive technologies in the vehicle . In particular, we used these data to 

augment the  rating system of cognitive distraction  developed by Strayer et al., (2013)  where 



 

7 
 

non-distracted single -task driving anchored the low -end (Category 1) and the cognitively 

demanding OSPAN task anchored the high -end (Category 5) of the scale. The rel ative 

ranking compared to these anchors provides an index of the cognitive workload for that 

activity when concurrently paired with the operation of a motor vehicle.    

 

Experiment 1 : Baseline Assessment  

 

Experiment 1 was designed to provide a baseline assessment of the nine tasks previously 

described. In this controlled assessment, participants were seated in front of a computer 

monitor that displayed a static fixation cross and they perform ed the conditio ns without the 

added task of driving. The objective wa s to establish the cognitive workload associated with 

each activity  and to thereby predict  the accompanied cognitive distraction  from  performing 

that activity while operating a motor vehicle.  

 

Method  
 

Participants : Forty -five  participants (2 7 men and 18 women) from the University of Utah 

participated in the experiment . Participants ranged in age from 18 to 40 years, with an 

average age of 24.8 years. All reported having normal  neurological functioning, normal or 

corrected-to-normal visual acuity, normal color vision (Ishihara, 1993) , a valid driverõs 

license, and English  fluency . Participantsõ years of driving experience ranged from 2.5 to 

24, with an average of 8.5 years. All of the participants owned a cellular phone and 87 

percent  reported that they used their phone regularly while driving . They were recruited 

via University -approved flyers posted on campus bulletin boards  and via word of mouth 

within the community . Interested individuals contacted an e -mail address for further 

information and to schedule an appointment . Eligible participants reported a clean driving 

history (e.g., no at -fault accidents in the past five years).   

 

Materials : Subjective workload ratings were collected using the NASA TLX survey  

developed by Hart and Staveland (1988). After completing each of the conditions , 

participants responded to each of the six items on a 21-point  Likert  scale ranging from 

òvery lowó to òvery high.ó The questions in the NASA TL X were: 

 

a) How mentally demanding was the task?  

b) How physically demanding was the task?  

c) How hurried or rushed was the pace of the task?  

d) How successful were you in accomplis hing what you were asked to do?  

e) How hard did you have to work to accomplish your level of performance ? 

f) How insecure, discouraged, irritated, stressed, and annoyed were you?  

 

Equipment : Microsoft PowerPoint 2013 was used to coordinate  an interactive messaging 

service with text to speech features. Participants were given a short list of commands (i.e., 

Repeat, Reply, Delete, Next Message, and Send) that were used to control  the messaging 

program. The PowerPoint program was controlled by the experimenter who reacted to the 

participantsõ verbal commands, mimicking a speech detection system with perfect fidelity.  

 

Cellular service was provided by Sprint. The cellular phone was  manufactured by Apple 

(Model iPhone 5) running iOS 6 or iOS 7 when the update became available. An Olympus 



 

8 
 

ME -15 Mono Lapel microphone was clipped to the participantõs collar for a voice-controlled 

Siri messaging system.  An iPhone headset microphone adapt er was used to allow output 

from and input to the iPhone 5 when participants used auditory commands to interact with 

Siri. TEAC CD -X70i Micro Hi -Fi system speakers were used for the presentation of the 

audio for each of the conditions.  

 

The peripheral detection response task (DRT) hardware and software were designed by 

Precision Driving Research, Inc. following  ISO standards (ISO, 2012). Adopting the protocol 

used by Strayer et al., (2013), a  red/green LED light was mounted on the partici pantõs head 

via a headband. The light was adjusted to an average 15  ̄to the left and 7.5  ̄above the 

participantõs left eye. Response reaction time was recorded with millisecond accuracy via a 

microswitch  attached to participantsõ left thumb that was depressed in response to the 

green light.  

 

Zephyr BioHarness 3 Heart Rate Monitors , which attach  around the chest with a flexible 

strap, were used for 10 of the participants in this experiment . The BioHarness  3 collected 

measures of heart rate  (e.g., Beats per Minute; BPM) .  

 

Hosted on a 32-bit research laptop, NeuroS can 4.5 software was used to collect con tinuous 

EEG for 10 of the participants in the experiment. The EEG was recorded using a 

NeuroScan32-electrode NuAmp amplifier . The EEG was filtered online with a DC notch 

filter (60 Hz)  with a sample A/D rate of 250  Hz. The DRT software communicated with the 

NeuroScan system via a parallel port connection to create event markers associated with  

the continuous EEG. These event markers  allowed for offline stimulus -locked analysis of 

the EEG recordings  (i.e., the DRT stimuli (see below) were used to create time -locked 

ERPs). The EEG was first visually inspected for artifact and any sections with  excessive 

noise from movement or electronic interference were removed. Next, the influence of blinks 

on the EEG was corrected using ocular artifact rejection techniques  (Semlitsch, Anderer, 

Schuster, & Presslich , 1986) and the data was epoched 200ms before  to 1200ms after the 

onset of the green target light . These epochs were then filtered with a band  pass, zero phase 

shift filter of 0. 01 to 12 Hz. Finally, events that exceeded an ar tifact rejection criterion of 

100 mV were rejected and the remaining events  were averaged to obtain one subjectõs 

average waveform for each condition in the experiment .  

 

Procedure: Prior to their appointment time, participants were sent a general demographic 

survey . Upon arrival at the lab, participants read and signed the Unive rsity of Utah IRB 

approved consent document .  

 

Table 1. Dependent Measures Obtained in Experiment 1 

DRT and NASA TLX 
measures were collected 

DRT, NASA TLX, and Heart 
Rate measures were 

collected 

DRT, NASA TLX, and 
EEG measures were 

N = 25, 12 female N = 10, 4 female N = 10, 2 female 

 

As shown in Table 1, 25 of the participants performed the experiment without any 

physiological recording equipment attached to their body. This group served as a control to 

ensure that the collection of physiological data did not alter the observed pattern of 
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behavioral data. 1 Ten of the participant s served in the heart -rate group and they wore a 

Zephyr  BioHarness 3 Heart Rate Monitor. These participants  were given instructions on 

how to attach the device and the experimenter verified correct placement and recording of 

heart rate data.  

 

Ten of the pa rticipants served in the EEG group and performed the study while wearing an 

EEG cap. The research team placed an EEG cap on the participant and ensured cap fit . 

Measuring EEG involved using a cap with built -in electrodes configured based upon the 

International 10 ð20 system (Jasper, 1958). Dry sponges (QuickCell ã cellulose-based 

electrodes manufactured by Compumedics) were placed in each electrode location in 

preparation for cap use . Saline was applied to the sponges so that they expanded to make 

contact with the surface of the participantõs head, with all  impedances below 10kǸ. A 

reference electrode was placed behind the left ear on the mastoid bone and electrode site 

FP1 served as the ground . Electro oculogram (EOG) electrodes were placed at the lateral 

canthi of both eyes (horizontal) and above and below the left eye (vertical) to track eye 

movements and record eye blinks for later data processing. Participantsõ field of view and 

normal range of motion were not impeded when wearing  the EEG cap.  

 

Participants were asked to complete nine different nine -minute conditions that are 

described below. These conditions were counterbalanced across participants using a Latin 

Square design. The participants were seated an average of 65cm from a  computer screen 

displaying a fixation cross. Participants were asked to look forward and avoid making 

excessive head and eye movements during the completion of each task. Before each 

condition began, participants were familiarized with the procedures for interacting with the 

system and they were required to demonstrate proficiency before data collection for that 

condition commenced.  
 

Table 2.  Experimental Conditions Performed in an Order Counterbalanced  
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As shown in Table 2 , the Single Task condition was selected to provide a baseline of 

cognitive workload  (i.e., no concurrent secondary task) . In the second condition (Car 

Command) , participants generated verbal commands to a lter  their vehicle environment. 

Every 30 -45 seconds, a short audio cue was played (e.g., òYou are getting hotó or òYou want 

to change the radio stationó). The time interval between audio cues was randomized to 

minimize the predictability of the secondary task stimuli. Participants interpreted the cue 

and then  stated a verbal command in response to the cue (e.g., òTurn AC on lowó or òTune 

radio to 88.3ó).  

 

                                                 
1 Indeed, a preliminary analysis revealed that the DRT and the NASA TLX measures reported below were 

identical for the three cohorts, thereby establishing that the collection of physiological data did not alter the 

patter n of behavioral data.  
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In the third condition  (Natural Listen ), participants interacted with a simulated email /text 

messaging service. The system was fully automated with  perfect speech recognition 

capabilit y implemented using the òWizard-of-Ozó paradigm (Kelley, 1983; Lee, Caven, Haake, 

& Brown , 2001; Strayer et al., 2013 ). Prior to beginning the condition, the participant was 

familiarized with the programõs basic commands, which were: Repeat, Delete, and Next 

Message. The email and text messages and the system confirmations were pre -recorded using  

a high -fidelity  female voice (author J.T.) . Participants were asked to listen  to the messages, 

but they were not allowed to  compose or send messages in reply . The messages were designed 

to be representative of text/email messages  that individuals receive on a regular basis from 

friends, family, coworkers, and service providers (i.e., spam). Message type and duration were 

equated in the four  message system conditions  (Conditions 3-6). 

 

In the fourth condition  (Synthetic Listen ), participants interacted with the same system 

design as in the third . However, the messages and system confirmations were pre -recorded 

using a synthetic, computerized female voice, òKate,ó from NeoSpeech (NeoSpeech, 2012). 

NeoSpeech was selected because of its superior synthetic speech generat ion capabilities . 

Prior to beginning the condition, the participant was familiarized with the programõs basic 

commands, which wer e: Repeat, Delete, and Next Message. Participants were asked to listen  

to the messages, but were not allowed to compose or send messages in reply .   

 

In the fifth condition  (Natural  Listen  + Compose), participants interacted with the same 

system design as in the second condition. Prior to beginning t he condition, the participant 

was familiarized with the programõs basic commands, which were: Repeat, Reply, Delete, 

Next Message, and Send. The messages and system confirmations were pre -recorded using 

the same high -fidelity female voice used in the third condition . Participants were asked to 

listen and then compose a response to messages that required a response.   

 

The sixth condition (Synthetic Listen  + Compose), was identical to the fourth except that 

the messages and system confirmations were pre -recorded using the same synthetic 

NeoSpeech female voice used in the fourth condition . Prior to beginning t he condition, the 

participant was familiarized with the programõs basic commands, which were: Repeat, 

Reply, Delete, Next Message, and Send. Participants were asked to listen and then compose 

a response to messages that required a response. 

 

In the seventh condition  (Menu System with High Reliability ), participa nts interacted with 

a simulated  infotainment /navigation  system. They were instructed to navigate through an 

auditory menu system to select a grocery store, coffee shop, gas station, bank, or a 

restaurant location for their GPS system to use once they arrived at an unfamiliar location 

in the city . For the restaurants, participants were asked to use the systemõs auditory guides 

to listen to at least one of the available reviews and make dinner reservations if they liked 

that restaurant. The system indicated the possible  commands to make the next selection. 

Prior to beginning the condition, participants were familiarized with the programõs basic 

commands. Participants interacted with the program as if it w ere a fully automated system. 

As with conditions 3-6, perfect speech recognition capabilities were implemented using the 

òWizard-of-Ozó paradigm.  

 

In the eighth condition (Menu System with Moderate  Reliability ), participants interacted 

with a system designed in the same manner as that in the seventh condition. However, the 
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system randomly introduced comprehension and menu navigation errors. System errors 

occurred on average 7.8 (sd = 2.15) times during the nine -minute condition .   

 

In the ninth condition, participants interacted with Siri via an  Apple  iPhone 5. To create a 

hands-free system, a  lapel microphone was clipped to the participantõs collar and the audio 

output was played through the external speakers . Participants were asked to interact with 

Siri to perform  three tasks: listening to and sending text messages, updating Facebook or 

Twitter status, and modifying  and reviewing  calendar appointments. Participants were 

instructed to activate this version of  òEyes-Freeó Siri by saying, òHello /Hi  Siri .ó The 

researcher would then manually activate  Siri to allow  participant s to state their command  

(i.e., the participant neither looked at nor made physical contact with the iPhone) . Before 

starting the condition, the researcher demonstrated the use of each interaction, and then 

participants were required  to demonstrate proficiency before data collection commenced. 

Participants were free to alternate between  the three tasks  in a self -paced order. 

 

In each of the conditions  described above, participants also performed the DRT  task  (ISO, 

2012). Followi ng the protocol used by Strayer et al., (2013), t he DRT task presented red or 

green lights every three -five  seconds via a head-mounted device . Red lights were presented 

80 percent  of the time and green lights were presented 20  percent  of the time. Both the 

color of the light and the interval  between trials  (e.g., 3-5 seconds) was randomized (i.e., 

this is a 20/80 oddball  with stim uli presented in a Bernoulli sequence with an interstimulus 

interval  of 3-5 seconds). Using a  go/no-go design, participants were instructed to respond to 

the green light as quickly as they could by depressing a microswitch  that was placed on the 

participan tsõ left thumb, but to not respond to the red lights. The lights remained 

illuminated until a response was made or one second had elapsed. 

 

Results  
 

DRT: The DRT data reflect the manual response to the red and green lights in the 

peripheral detection task . The RT and accuracy data for the DRT task are plotted in 

Figure s 2 and 3, respectively  (Appendix) . RT for correct responses (i.e., green light 

responses) was measured to the nearest msec . The accuracy data were converted to the 

non-parametric measure of sensitivity, Aõ, where a response to a green light was coded as a 

òhit,ó non-responses to a red light were coded as a òcorrect rejection,ó non-responses to a 

green light were coded as a òmiss,ó and responses to a red light were coded as a òfalse 

alarmó (Pollack & Norman, 1964) 2. A repeated measures Analysis of Variance (ANOVA) 

found that RT increased across condition , F(8, 352) = 26.10, p < .01, partial Ȇ2 = .37, and 

that Aõ decreased across condition, F(8, 352) = 2.63, p < .01, partial Ȇ2 = .06.  

 

NASA TLX : The data for the six NASA TL X subjective workload ratings are plotted in Figure  4 

(Appendix) . In each of the panels, the nine conditions are plotted across the abscissa and the 

21-point Likert scale workload rating is represented on the ordinate, ranging  from òvery low,ó 

1, to òvery high,ó 21. A series of repeated measures ANOVAs found that NASA TLX  ratings 

increased for mental  workload, F(8, 352) = 24.74, p < .01, partial Ȇ2 = .36; physical  workload,  

F(8, 352) = 26.29, p < .01, partial Ȇ2 = .13; temporal  demand, F(8, 352) = 8.66, p < .01, partial Ȇ2 

                                                 
2 Aõ measures the average area under the receiver operating characteristic curve (Parasurman & Davies, 1984) 

and is computed as Aõ = 1.0-0.25*((p(false alarm)/p(hit)) + (1 -p(hit))/(1 - p(false alarm))).  
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= .16; performance , F(8, 352) = 16.80, p < .01, partial Ȇ2 = .28; effort , F(8, 352) = 24.18, p < .01, 

partial Ȇ2 = .36; and frustration , F(8, 352) = 31.51, p < .01, partial Ȇ2 = .42. 

 

ERPs: Figure  5 (Appendix) present s the grand average ERP waveforms  obtained in  

Experiment  1 at the midline Parietal electrode site ( Pz) that w ere time -locked to the onset 

of green lights in the DRT task . In the figure, the  amplitude in microvolts is cross-plotted 

with  time in  msec. A close inspection reveals a well -defined P2-N2-P300 ERP component  

structure . We focused on the P300 component of the ERP  because of its sensitivity to 

cognitive workload , and we measured both its peak latency and amplitude.  

 

In Figure 6 (Appendix) , P300 peak latency, measured as the point in time of maximum 

positivity in a window between 350 and 800 msec, is plotted for each of the conditions in the 

experiment. A  repeated measures ANOVA found no significant main effect of condition on 

P300 latency,  F(8, 72) = 1.57, p = ns, partial Ȇ2 = .15. The P300 amplitude  was quantified by 

computing the average area under the curve between 350 and 800 msec. Figure 7 

(Appendix) plots P300 amplitude as a function of condition. A  repeated measures  ANOVA 

found a main effect of condition , F(8, 72) = 2.39, p < .05, partial Ȇ2 = .21. 

 

Heart Rate : The Zephyr Bioharness 3 contains a number of internal algorithms that were 

useful for this research. The internal clock of each heart rate monitor was used to  identify 

the segment of heart data that corresponded to each condition. Once activated, heart rate 

monitors began automatically collecting data at 1 Hz. To calculate beats per minute (BPM) 

for each subject and condition, the average BPM were calculated af ter removing the first 

and last 30s of each conditionõs recording interval. Figure 8 (Appendix) plots heart rate  in 

BPM as a function of condition.  The effect of condition was not significant , F(8, 72) = .29, p 

= ns, partial Ȇ2 = .03. 

 

Discussion  
 

Experiment 1 was designed to provide a baseline assessment of several voice -based 

activities. In this assessment, participants did not drive but were seated in front of a 

computer monitor that displayed a static fixation cross. Participants were fitted wit h a 

head-mounted DRT device and they completed each of the secondary tasks for nine  minutes 

while simultaneously responding to green lights from the DRT device. After completing 

each of the nine tasks, subjective workload ratings were taken.  

 

Clearly, not all in -vehicle voice-based interactions had the same level of cognitive workload. 

It is noteworthy that the voice -based interactions that were evaluated were pure measures 

of cognitive workload in that the tasks did not require the participant  to move their hands 

or divert their eyes from computer screen. The results from the different measures had a 

good correspondence and help lay the foundation for extending the metric of cognitive 

workload  developed by Strayer et al., (2013) . As the cogniti ve workload associated with 

performing secondary task s increases, the cognitive distraction associated with performing 

that activity while operating a motor vehicle should increase  (i.e., driving performance 

should be adversely affected by in -vehicle cogni tive workload).  
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Experiment 2 : Driving Simulator  

 

The goal of Experiment 2 was to extend the findings from Experiment  1 to operating a high -

fidelity driving simulator . Given the increase in cognitive workload associated with 

performing the respective secondary task s, we expected that measures of driving performance 

would be adversely affected. The driving simulator used a car following scenario on a 

multilane highway with moderate traffic.  Participants followed a lead vehicle that braked 

aperiodically  throughout the scenario and, in addition to the measure s collected in 

Experiment 1, we also collected brake reaction time  and following distance , as these variables 

associated with the primary task of driving have been shown in earlier research to be 

sensitive to cognitive distraction  (Caird et al., 2008; Horrey & Wickens, 2006) . 

 

Method  
 

Participants : Forty -one participants ( 21 men and 20 women) from the University of Utah 

participated in the experiment . Participants ranged in age from 18 to 40, with an average 

age of 25.2 years. All reported normal neurological functioning, normal or corrected -to-

normal visual acuity, normal color vision (Ishihara, 1993) , a valid driverõs license, and 

English  fluency . Participantõs years of driving experience ranged from 2.5 to 24, with an 

average of nine  years. All participants owned a cellular phone and 84 percent  reported that 

they used their phone regularly while driving. They were recruited via University -approved 

flyers posted on campus bulletin boards  and via word of mouth within  the community . 

Interested individuals contacted an e -mail address for further information and to schedule 

an appointment. Eligible participants reported a clean driving history (e.g., no at -fault 

accidents in the past five years ).  

 

Equipment : In addition to the equipment used in Experiment 1, the present study used a 

fixed -base high fidelity driving simulator (made by L-3 Communications ) with high -

resolution displays providing a 180 -degree field of view . The dashboard instrumentation, 

steering wheel, gas, and brake pedals were from a Ford Crown Victoria sedan with an 

automatic transmis sion. The simulator incorporated  vehicle dynamics, traffic -scenario, and 

road-surface software to provide realistic scenes and traffic conditions. All other equipment 

was identical to Experiment 1.  

 

Procedure: The procedures used in Experiment 1 were also used in Experiment 2, with the 

following modifications . In Experiment 2 , we used nine  counterbalanced simulated car-

following  scenarios in which participants drove on a multilane freeway with moderate  

traffic  (approximately 1500 vehicles/lane/hour) . Participants followed a pace car that would 

apply its brakes aperiodically . Participants were instructed not to change lanes to pass the 

pace car, and were asked to maintain  a two-second following distance  behind the pace car . 

Participants were given a five -minute practice session to familiarize thems elves with the 

driving simulator . In the practice session, participants were trained to follow a lead vehicle 

on the highway at a two -second following distance, braking whenever they saw the lead 

vehicleõs brake lights illuminate. If they fell more than 25 meters  behind the lead vehicle, a 

bell sounded, cueing the m to shorten their following distance. The bell was not used once 

the experimental testing commenced.  
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Table 3. Dependent Measures Obtained in Experiment 2 

Driving Performance, DRT, 
and NASA TLX measures 

were collected 

Driving Performance, DRT, 
NASA TLX, and Heart Rate 

were collected 

Driving Performance, 
DRT, NASA TLX, and 
EEG were collected 

N = 21, 12 female N = 10, 5 female N = 10, 3 female 

 

As shown in Table 3 , 21 of the participants performed the experiment without any 

physiological recording equipment attached to their body. Ten of the participants served in 

the heart -rate group , and they wore a Zephyr BioHarness 3 Heart Rate Monitor. Ten of the 

participants serv ed in the EEG group and performed the study while wearing an EEG cap. 3 

 

Results  
 

Driving Performance Measures: Figure 9 (Appendix) presents the Brake Reaction T ime (RT) 

measured as the time interval between the onset of the pace carõs brake lights and the 

onset of the participantõs braking response (i.e., a 1% depression of the brake pedal). Figure 

10 (Appendix) presents the Following D istance, measured as the distance between the rear 

bumper of the pace car and the front bumper of the participantõs car at the moment of 

brake onset . A repeated measures ANOVA found that both RT, F(8, 320) = 4.26, p < .01, 

partial Ȇ2 = .10, and following distance increased across condition , F(8, 320) = 2.15, p < .05, 

partial Ȇ2 = .05. A subsidiary  linear mixed model analysis  that held following distance 

constant found that br ake RT increased as a function of condition over and above any 

compensatory effects associated with following distance , F(8, 5426) = 5.15, p < .01 (see 

Figure A-3, Appendix ). These data establish that performing in -vehicle activities that differ 

in their attentional requirements have differential effects on driving performance  (i.e., the 

greater the cognitive workload associated with a s ubsidiary  in -vehicle activity, the greater 

the cognitive distraction) . 

 

DRT: The RT and accuracy data for the DRT task are plotted in Figure s 2 and 3, 

respectively. A repeated measures ANOVA found that RT increased across condition, F(8, 

320) = 23.09, p < .01, partial Ȇ2 = .37, and that Aõ decreased across condition, F(8, 320) = 

3.58, p < .01, partial Ȇ2 = .08. 

 

NASA TLX : The data for the six NASA TLX subjective workload ratings are plotted in 

Figure 4. The subjective workload ratings increase d systematically across the conditions . A 

series of repeated measures ANOVAs found that NASA TLX ratings increased for mental 

workload, F(8, 320) = 28.32, p < .01, partial Ȇ2 = .42; physical workload,  F(8, 320) = 10.88, p 

< .01, partial Ȇ2 = .21; temporal demand, F(8, 320) = 14.42, p < .01, partial Ȇ2 = .27; 

performance , F(8, 320) = 8.20, p < .01, partial Ȇ2 = .17; effort, F(8, 320) = 23.99, p < .01, 

partial Ȇ2 = .38; and frustration,  F(8, 320) = 40.60, p < .01, partial Ȇ2 = .50. 

  

                                                 
3 A preliminary analysis revealed that the DRT and the NASA TLX measures reported below were identical for 

the three cohorts, thereby establishing that the collection of physiological data did not alter the pattern of 

behavioral data.  
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ERPs: EEG was recorded and analyzed in Experiment 2 using the same protocol as that of 

Experiment 1 . The resulting ERPs are plotted in Figure 1 1 (Appendix) . As with  Strayer et 

al., (2013), the ERP s were degraded as we moved from the laboratory to the driving 

simulator due to the  increased biological  noise from eye/head/body movements  and 

electronic noise from the driving simulator . P300 peak latency, measured as the point in 

time of maximum positivity in a window between 400 and 800 msec , is plotted for each of 

the conditions in the experiment. Figure 6 presents the P300 laten cy as a function of 

condition. A repeated measures ANOVA found no significant main effect of condition of 

P300 latency  F(8, 72) = 1.49, p = ns, partial Ȇ2 = .14. As in Experiment 1, t he P300 

amplitude , presented in Figure 7, were quantified by computing the average area under the 

curve between 400 and 800 msec. A repeated measures ANOVA of the P300 area under the 

curve found no effect of condition , F(8, 72) = 1.05, p = ns, partial Ȇ2 = .10. 

 

Heart Rate : Heart Rate was recorded in Experiment 2 using the same protocol as that of 

Experiment 1. Figure 8 plots heart rate in BPM as a function of condition. The effect of 

condition was not significant , F(8, 72) =.61, p = ns, partial Ȇ2 = .06.  

 

Discussion  
 

Experiment 2 replicated and extended the pattern obtained in Experiment 1.  Importantly, 

the increases in cognitive workload resulted in systematic changes in driving performance 

compared to non -distracted driving. In particular, brake reaction time to imperative events 

in the driving simulator systematically increased as a functio n of the cognitive workload 

associated with performing the different in -vehicle activities. This  pattern held even when 

controlling for the increased following distance drivers adopted in these conditions. The 

P300 data also replicate our earlier reports o f suppressed P300 activity when comparing 

single -task and hands -free cell phone conditions (Strayer & Drews, 2007) . 

 

It is worth considering the pattern of data had participants protected the driving task at the 

expense of the other in -vehicle activities. In such a case, we would expect that the primary 

task measures of driving would be insensitive to secondary -task workload. Instead, we show 

that  the mental resources available for driving are inversely related to the cognit ive 

workload of the concurrent secondary task. Thus increasing the cognitive workload of the in -

vehicle secondary tasks resulted in systematic increases in cognitive distraction.  
 

Experiment 3  

 

The purpose of Experiment 3 was to establish that the patterns obtained in the laboratory 

and driving simulator generalize to the operation o f an instrumented vehicle on  residential 

roadways . This  comparison  is important because the consequences of impaire d driving in 

the city are different from that of a driving simulator . Participants drove an instrumented 

vehicle in a residential section of a city  while concurrently performing the nine  conditions 

used in Experiments 1 and 2 . If the findings generalize, t hen there should be a  good 

correspondence between the results of Experiment 3 and those of Experiments 1 and 2.  
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Method  
 

Participants : Forty  participants ( 23 men and 17 women) from the University of Utah 

participated in the experiment . Participants ranged in age from 20 to 39, with an average 

age of 26.1 years. All had normal neurological functioning, normal or corrected -to-normal 

visual acuity, normal color vision  (Ishihara, 1993) , a valid drive rõs license, and English  

fluency . Particip antsõ years of driving experience ranged from 2 to 24, with an average of 

9.9 years. All participants owned a cellular phone and 89 percent  reported that they used 

their phone regularly while driving . They w ere recruited via University -approved flyers 

posted on campus bulletin boards  and via word of mouth within  the community . Interested 

individuals contacted an e -mail address for further information and to schedule an 

appointment . The Division of Risk Management Department at the University of Utah ran 

a Motor Vehicles Record (MVR) report on each prospective participant to ensure 

participation eligibility based on a clean driving history (e.g., no at -fault accidents  in the 

past five years ). In addition, following University policy, each prospective particip ant was 

required to complete a University -devised 20-minute online defensive driving course and 

pass the certification test .  

 

Equipment : In addition to the equipment used in Experiment 1, Experiment 3  used an 

instrumented 2010 Subaru Outback . The vehicle was augmented with four 1080p  Microsoft  

LifeCam USB cameras that captured the driving environment and participantsõ facial 

features . All other equipment  was identical to Experiment 1.  

 

Procedure: The procedures used in Experiment 1 were also used in Experi ment 3, with the 

following modifications : prior to their appointment time, participants were sent the 

University of Utah IRB approved informed consent document, general demographic 

surveys, and instruc tions for completing the 20-minute online defensive driving course and 

the certification test .  

 

Before beginning the study, the driver was familiarized with the controls of the instrumented 

vehicle, adjusted the mirrors and seat, and was informed of the tasks to be completed while 

driving. The participant drove around a parking lot in order to become familiar with the 

handling of the vehicle . Next, participa nts drove one circuit on a 2.7 -mile loop in the Avenues 

section of Salt Lake City, UT in order to become familiar with the route itself  (see Appendix). 

The route provided a suburban driving environment and contains seven all -way controlled 

stop signs, one two-way stop sign, and two stoplights. A research assistant and an 

experimenter accompanied the participant in the vehicle at all times . The research assistant 

sat in the rear and the experimenter sat in the front passenger seat and had ready access to a 

redundant braking system and notified the driver of any potential roadway hazards . 

Participants were familiarized with each condition while stopped on th e side of the road.   

 

The driverõs task was to follow the route defined above while complying with all local traffic 

rules, including a 25 mph speed restriction. If drivers exceed ed 25 mph, they were reminded 

of this restriction by the research team. Thro ughout each condition, the driver completed the 

DRT. Each condition lasted approximately 10 minutes, which was the average time required 

to make one loop around the track . Safety directions were reiterated before each driving 

condition.  At the conclusion o f the study, participants returned to the Behavioral Sciences 

building where the participants were compensated for their time and debriefed.  
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Table 4. Dependent Measures Obtained in Experiment 3 

Driving Performance, DRT, and NASA 
TLX were collected 

Driving Performance, DRT, NASA TLX, 
and Heart Rate were collected 

N = 20, 10 female N = 20, 7 female 

 

As shown in Table 4, 20 of the participants performed the experiment without any 

physiological recording equipment attached to their body. Another 20 participants served in 

the heart -rate group , and they wore a Zephyr BioHarness 3 Heart Rate Monitor. 4 

 

Results  
 

DRT: The RT and accuracy data for the DRT task are plotted in Figures 2 and 3, 

respectively. A repeated measures ANOVA  found that RT increased across condition, F(8, 

312) = 22.83, p < .01, partial Ȇ2 = .37, and that Aõ decreased across condition, F(8, 312) = 

8.00, p < .01, partial Ȇ2 = .17. 

 

NASA TLX : The data for the six NASA TLX subjective workload ratings are plotted in Figur e 

4. The subjective workload ratings increase d systematically with  condition . A series of 

repeated measures ANOVAs found that NASA TLX ratings increased for mental workload, 

F(8, 312) = 34.84, p < .01, partial Ȇ2 = .47; physical workload , F(8, 312) = 7.78, p < .01, partial 

Ȇ2 = .17; temporal demand, F(8, 312) = 16.19, p < .01, partial Ȇ2 = .29; performance , F(8, 312) 

= 11.12, p < .01, partial Ȇ2 = .23; effort,  F(8, 312) = 33.18, p < .01, partial Ȇ2 = .46; and 

frustration,  F(8, 312) = 36.39, p < .01, partial Ȇ2 = .48. 

 

Physiological  measures: Heart Rate was recorded in Experiment 3 using the same protocol 

as that of the prior studies. Figure 8 plots heart rate in BPM as a function of condition. The 

effect of condition was not significant , F(8, 152) = .84, p = ns, partial Ȇ2 = .04. 

 

Discussion  
 

Experiment 3 replicated and extended the findings from the prior experiments in several 

important ways. Most importantly, they document that the patterns observed in the 

controlled laboratory setting of Experiment 1 and in the driving simulator setting of 

Experiment 2 generalize to what was observed with the instrumented vehicle  in a 

naturalistic setting .  

 

General Discussion  

 

The pattern s observed in the three experiments reported in this report  are strikingly 

consistent, establishing that lessons learned in the laboratory and driving simulator are in 

good agreement with studies of cognitive distraction on the roadway . In each case, they 

document  a systematic increase in cognitive workload as participants performed different 

in -vehicle activities . The data for the three studies were entered into a MANOVA  to 

determine how cognitive  workload changed across condition for the three experiments . For 

                                                 
4 A preliminary analys is revealed that the DRT and the NASA TLX measures reported below were identical for 

the two cohorts, thereby establishing that the collection of physiological data did not alter the pattern of 

behavioral data.  
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th e sake of clarity, we focused our analyses based upon secondary and subjective  

assessments because these measures were identical across the three experiments . 

Obviously, there were no primary -task driving measures in Experiment 1 and the measures 

of brake reaction time and following distance obtained in the simulator were not available 

in the inst rumented vehicle . 

 

A MANOVA performed on the secondary -task DRT data revealed a significant effect of 

condition, F(16, 108) = 27.16, p < .01, partial h2 = .80, experiment, F(4, 246) = 35.78, p < .01, 

partial h2 = .37, and a condition X experiment interaction, F(32, 218) = 2.02, p < .01, partial 

h2 = .23. Further analysis found a main effect of condition such that RT increased, F(8, 984) 

= 68.13, p < .01, partial h2 = .36, and Aõ decreased, F(8, 984) = 12.84, p < .01,partial h2 = .09 

across condition . In addition,  RT increased, F(2, 123) = 28.08, p < .01, partial h2 = .31 and Aõ 

decreased, F(2, 123) = 84.07, p < .01, partial h2 = .57, from Experiment 1 to 3.  On the whole, 

there is good agreement across experiments; however, the laboratory - and simulator -based 

studies would appear to  provide a more conservative  estimate of the impairments to driving 

associated with in -vehicle technology  use. 

 

A MANOVA performed on the subjective workload  ratings revealed a significant effect of 

condition, F(48, 76) = 15.10, p < .01, partial h2 = .90, of experiment, F(12, 238) = 1.85, p < .05, 

partial h2 = .08; and a condition X experiment  interaction , F(96, 154) = 1.38, p < .05, partial h2 = 

.46. Across experiments, main effects of  condition were obtained for mental workload, F(8, 984) 

= 84.32, p < .01, partial h2 = .41; physical workload, F(8, 984) = 23.50, p < .01, partial h2 = .16; 

temporal demand, F(8, 984) = 35.86, p < .01, partial h2 = .23; performance, F(8, 984) = 33.90, p 

< .01, partial h2 = .22; effort, F(8, 984) = 78.15, p < .01,partial h2 = .39; and frustration, F(8, 984) 

= 107.14, p < .01, partial h2 = .47. The NASA TLX measures also differed across Experiment 1 

to 3 for mental workload, F(2, 123) = 7.63, p < .01, partial h2 = .11; physical workload, F(2, 123) 

= 7.06, p < .01,partial h2 = .10; temporal demand, F(2, 123) = 5.54, p < .01, partial h2 = .08; 

effort, F(2, 123) = 9.40, p < .01,partial h2 = 13; and f rustration, F(2, 123) = 4.85, p < .01, partial 

h2 = .07, but not for performance ( p > .08). On the whole, the subjective workload measures 

were in agreement  across six sub-scales, nine conditions, and three experiments . In particular, 

there was a consistent increase in subjective workload ratings from conditions 1 -9 and also a 

systematic increase in subjective workload ratings from Experiments 1 -3.  

 

In the main , moving from the laboratory to the driving simulator to the instrumented 

vehicle increased the intercept of the cognitive workload curves , and similar  condition 

effects were obtained for  the different  dependent measures . This experimental cross-

validation establishes  that the effects obtained in the simulator generalize to on -road 

driving. In fact, our measures in Experiment 1 were remarkably consistent wit h those 

obtained in Experiment 3, suggesting that there may be occasions where the added 

complexity , expense, and risk of on -road study are unnecessary. Moreover, the similarity of 

the primary, secondary, subjective, and physiological measures provides convergence in our 

workload assessments . It is noteworthy that these tasks allowed driver s to maintain their 

eyes on the road and their hands on the wheel. That is, these in -vehicle activities are 

cognitively distracting to different degrees.   

 

One finding that merits further discussion is that Heart Rate did not reach statistical 

significance in any of the three studie s. There are at least three  general reasons this may be. 

The first is that Heart Rate may simply not be sensitive to workload. That is, changes in 
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cognitive load may not be associated with changes in Heart Rate. This seems unlikely, 

however, given that a n umber of recent driving studies have found associations between 

cognitive load and characteristics of cardiovascular functioning, especially Heart Rate (See 

Lenneman & Backs, 2009; Mehler, Reimer, & Coughlin, 2012; Reimer et al., 2011). A second 

possible explanation is that a third variable could have obscured the sensitivity of Heart 

Rate. This masking variable could have been related to the study design, the data collection 

protocol, the hardware used for data collection, or the algorithms used to compute  heart rate. 

While all of these possibilities are difficult to completely rule out, the fact that the same basic 

hardware and data collection protocols have been successfully used in other research ( see 

Cooper, Ingebretsen, and Strayer, 2014) makes the pos sibility of a masking variable unlikely. 

A final potential explanation is that the effect of heart rate may be relatively small and the 

sample size of the current studies may not have been sufficient to detect an effect. Given that 

experiments  1 and 2 had just 10 subjects each, while experiment  3 had just 20, this 

explanation seems reasonable. Indeed, the effect size estimates across each of the 

experiments ranged from just Ȇ2 = .03 to Ȇ2 = .06. By way of comparison, using the exact 

same hardware, the effec t size estimate of Heart Rate in the Cooper, Ingebretsen, & Strayer 

paper (2014) was Ȇ2 = .146. In order to find a significant effect with these small sample sizes, 

the effect size of Heart Rate would have needed to be considerably larger. Given all these 

factors and considerations, the likeliest explanation for not finding an effect of cognitive task 

demands on Heart Rate is that it was simply not as sensitive as the DRT or subjective 

measures. By no means does this conclusion rule out the potential utilit y of Heart Rate as a 

complementary measure of cognitive load ; it does, however, suggest that the expected effect 

size of Heart Rate is likely relatively small, indicating that relatively robust sample sizes 

may be needed to effectively utilize the measure.  
 

Toward a Standardized Scale of Cognitive  Distraction  

 

The primary goal of the current research was to assess cognitive distraction associated with 

performing voice-based interactions  while operating a motor vehicle . Because the different  

dependent measures are on different scales (e.g., msec, meters, amplitude, etc.), each was 

transformed to a standardized score . This involved  Z-transform ing each of the dependent 

measures to have a mean of 0 and a standard deviation of 1 (across the exper iments and 

conditions) , and the average for each condition was then obtained . The standardized scores 

for each condition were then summed across the different dependent measures to provide 

an aggregate measure  of cognitive distraction . Finally, the aggrega ted standardized scores 

were scaled such that the non -distracted single -task driving condition anchored the low -end 

(Category 1) , and the OSPAN task anchored the high -end (Category 5 , see Strayer et al., 

2013) of the cognitive distraction scale . For each of the other tasks, the relative position 

compared to the low and high anchors provided an index of the cognitive workload for that 

activity when concurrently performed while operating a motor vehicle . The four -step 

protocol for developing the cognitive distraction scale is listed below.  

 

Step 1: For each dependent measure , the standardized scores  across 

experiments, conditions, and subjects  were computed using  Zi  = (xi  - X) / SD, 

where X refers to the overall mean and SD refers to the pooled standard 

deviation.  
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Step 2: For each dependent measure , the standardized condition averages 

were computed  by collapsing across experiment s and subject s (see Table 5 for 

the standardized condition averages for each dependent measure ). 

 

Step 3: The standardized condition averages across dependent measures were 

computed with an equal weighting for physical, secondary, subjective, and 

physiological metrics . Table 5 lists the 14 dependent measures that were 

used in  the standardized condition  averages separated in grey by the metric 

of which they are subordinate . The measures within each metric were also 

equally weighted . For example, the se condary task workload metric 

comprised an equal weighting of the measures DRT -RT and DRT -Aõ. Note 

that Aõ and P300 amplitude were inversely coded in the summed condition 

averages. Figure  12 (Appendix)  presents the average effect size of the 

difference between single -task and each of the remaining condition s using the 

pooled SD.  

 

Step 4: The standardized mean differences were range -corrected so that the 

non-distracted single -task condition had  a rating of 1.0 and the OSPAN task 

had a rating of 5 .0.5 

 

Xi = (((Xi  - min)  / (max - min))  *  4.0) + 1 

 

The cognitive distraction scale presented in Figure  13 below ranges from 1.0 for the single -task 

condition and 5.0 for the OSPAN task  (Strayer et al., 2013 ; see Figure 14 [Appendix]  for a side-

by-side comparison of the results of Phase I and Phase II ). Issuing simple car commands had a 

rating of 1.88 , whereas listening to e -mail/text messages increased the cognitive w orkload to an 

average of 2.18. When participants were allowed to compose short messages in response to e -

mail/text messages, the workload increased to an average of 3.0 8. The workload associated wi th 

a menu-based navigation (e.g., locate the nearest ATMs) was 2.83 when there was perfect 

speech translation , and rose to 3.67 when the errors in translation we re introduced into the 

system. Finally, the Siri -based interactions using an eyes -free, hands -free interface had the 

highest workload ratings  observed in Phase II, with a rating of 4.15.  

 

The goal of this research was to be comprehensive, using a variety of driving environments 

and an inclusi ve set of dependent measures. Using the standardized values for each 

dependent measure provided in Table 5 (Appendix) , it is possible to use steps 3 and 4 to 

alter the contribution of dependent measures from the current study. For example, it is 

straightforward to modify steps 3 and 4 to exclude physiological measures to see their 

impact on th e cognitive distraction scale. Moreover, provided two common anchor points 

(e.g., single-task driving and OSPAN) , other investigators could easily extend the workload 

scale to an entirely different  set of driving conditions, secondary tasks, and dependent 

measures. However, on a cautionary note, it is inappropriate to post -hoc òcherry-pickó 

dependent measures to create a desired outcome that is not representative of the overall 

pattern in the data.   

                                                 
5  Note that there are two conditions in comm on between Strayer et al., (2 013) and the current research. First, 

the single -task baseline conditions are  identical in the two studies. Second, the speech-to-text condition from 

Strayer et al., (2013) is identical to the synthet ic listen + compose conditi on. These two anchor points served to 

calibrate the range -correction algorithm affording ready comparison across the two studies.  



 

21 
 

 
Figure 13. Cognitive workload scale  

 

 

Takeaways from Phase II  

 

The data from the current research can be used to address four important issues related to 

voice-based interactions in the vehicle.  First, what is the basis of the impairments stemming 

from the use o f speech-based e-mail/texting? This question directly bears on how one might  

make the voice -based interactions less distracting. For example, does the quality of the 

speech impact cognitive workload? Is there a diffe rence between just listening to messages 

compared with listening and replying to the messages? Second, how do simple car commands 

compare on the workload metric? Given that car commands are short simple utterances, do  

they  compare favorably with an activit y like listening to an audio -book or talking on a cell 

phone? Moreover, do the different interfaces used by different original equipment 

manufacturers  (OEMs) differ, or are the y all  essentially the same? Third, do menu -based 

systems that support navigation  (e.g., locate the nearest ATM  or gas station ) incur a 

workload  cost? Given that menu -based systems offer a limited selection of offerings and a 

restricted set of responses, it is possible that the associated workload may be lower than  the 

speech-to-text e -mail/texting system tested by Strayer et al., (2013) . To what extent  does the 

reliability of the menu-based interface  affect distraction? Finally, advanced voice recognition 

systems such as Siri offer the potential for the driver to issue commands and queries using 
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natural language. Does this sort o f voice-based interface reduce the level of cognitive 

workload compared to the speech -to-text system evaluated by Strayer et al., (2013)?    

 

What makes voice -based interactions distracting?  
 

In our Phase I report (Strayer et al., 2013), we found that interacting with a speech -to-text 

email/text messaging system with perfect speech recognition capabilities resulted in a driver 

workload rating of  category 3. This finding was replicated in the Synthetic Listen + Compose 

condition in the current study. Importantly, the experimental protocol herein was structured 

such that we could decompose the speech-to-text interactions into a 2 X 2 factorial design in 

which the audio messages were delivered eit her by a pre-recorded human voice or a 

computerized synthetic voice (Natural vs. Synthetic) , and the pa rticipant s' interactions  with 

the system  involved  either  listening to e-mail/text messages or listening and composing 

replies to the messages (using a Wi zard-of-Oz perfect speech recognition system).  

 

Inspection of Figure s 12 and 13 clearly indicates that there was a large effect of composition  

that accounted for approximately 45  percent  of the increase in workload compared to the 

single-task baseline, and that the task of selecting and listening to the audio messages 

contributed approximately 55  percent  to the increased cognitive workload. Importantly, there 

was no systematic difference between the natural and synthetic speech conditions.  This 

conclusion was verified  with  a subsidiary 2 (Speech Quality: Natural vs. Synthetic) X 2 (Voice 

Interaction: Listen vs. Compose) MANOVA  using DRT and NASA TLX measures that were 

in common for all participants in the four conditions. The MANOVA revealed a significan t 

effect of Voice Interaction, F(8, 116) = 19.5, p < .01, partial h2 = .57, but neither the effect of 

Speech Quality nor any of the higher -order interactions we re significant.  This latter finding 

suggests that there is little to be gained by improving the quality of the synthetic speech , at 

least wit h regard to the driver õs cognitive workload . It  is noteworthy , however, that prior 

research (Harbluk  2005; Jamson et al., 2004; Lee et al., 2001; Raney, Harbluk, & Noy, 2005 ) 

found that the quality of the synthetic speech was associated with increased mental 

work load. The difference between the current research and the prior research likely reflects 

the improvements in the quality of computerized speech technology over the last decade. 

Notice also that just listening to messages without the possibility of generating a reply was 

associated with an average cognitive workload rating of 2.17 , a level that is comparable to the 

workload a ssociated with conversing on a cell phone (Strayer et al., 2013) . 

 

How distracting are simple car commands?   
 

Our research also examined the impact of simple car commands on cognitive workload. In 

this case, participants were requested to issue a voice -based command to change the 

infotainment system (e.g., change radio station) or adjust the climate control (e .g., raise or 

lower the HVAC). These commands were short, simple commands and we used Wi zard-of-

Oz technology so that the commands were received with perfect fidelity. Car commands 

were issued once every 30-45 seconds with the remaining t ime similar to the single -task 

baseline. With these simple car commands , the cognitive workload associated  with this 

interaction was 1.88, ranking close to list ening to an audio -book (Strayer et al., 2013).   

 

As part of our ongoing research, we  also conducted a companion research project , described 

in detail  in  Cooper & Strayer (in press) , that  evaluated the cognitive  demands of simple 
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auditory/vocal vehicle interactions using five 2013 and one 2012 model year OEM voice-

based systems. In this investigation, 36 participants completed a series of voice -based radio 

tuning and phone dialing tasks while driving on a variant  of the course used in Experiment 

3. Each of the participants drove the six vehicles on the nine -minute  loop, and they were 

periodically instructed to dial a 10 -digit number, call a contact  from  the contact list , change 

the radio station, or play a song from a pre -inserted CD. All of the interactions took plac e 

using a bluetooth hands -free voice system that  was activated with the touch of a button on 

the steering wheel.  The OEM s ystems evaluated in this  research were: a Ford equipped 

with MyFord To uch, a Chevrolet equipped with MyL ink, a Chrysler equipped with 

Uconnect, a Toyota equipped with En tune, a Mercedes equipped with  COMAND , and a 

Hy undai equipp ed with Blue Link. For comparis on purposes, mental workload was also 

assessed during single-task  and OSPAN baseline drive s. 

 

Across these eight  conditions (6 OEM systems , single -task , and OSPAN conditions ), 

measures of cognitive  workload were derived from reaction time, psychophysiological, and 

subjective workload metrics . Reaction time and accuracy measures were obtained  using the 

DRT based head-mounted device used in Experiments 1 -3. Heart rate was collected from all  

participants using  the same procedure as Experiments 1 -3. Finally, s ubjective workload 

measures were obtained using the NASA TLX. The resulting workload ratings are 

presented in Figure 15 (Appendix) , alongside the ratings from Strayer et al., 2013 and the 

workload ratings obtained from the current study .   

 

Inspection of Figure 15 indicates that that there are striking  differences in the cognitive 

demand incurred through voice interactions with different OEM voice-based systems. In 

the best case, we found that radio tuning and voice/contact dialing using the Toyotaõs 

Entune imposed a modest level of  cognitive workload  (1.70), a level comparable to that 

obtained with the audio -book condition from Strayer et al., (2013) and from the car 

command condition in the current experiment . In the worst case, those same activities 

using Chevyõs MyLink, imposed high levels of cogniti ve workload  (3.70), a level only 

surpassed by the Siri -based interactions and the OSPAN task . It is important to note that 

these systems were evaluated in a counterbalanced order using the same set of secondary 

tasks under the same driving conditions given the same level of practice with each of the 

infotainment system s. Moreover, there were no differences in workload between the six 

vehicles in single -task driving conditions, indicating that the differ ent ratings can be 

attributed directly to the cognitive interactions associated with the different OEM voice-

based systems and not to differences in the workload associated with driving the different 

vehicles. Perhaps n ot surprisingly, one of the most crit ical element s of workload appeared 

to be the duration of the interaction. This element was driven by the verbosity of the 

system, the number of steps required to execute an action, and the number of 

comprehension errors that arose. For the secondary infota inment tasks selected for this 

analysis, Toyotaõs Entune system required the least amount of time -on-task  while 

Chevroletõs MyLink required the most. 

 

How distracting are structured menu -based in t eractions ?  
 

Menu -based systems offer the possibility of structuring the number of items in the list , 

reminding the driver of the alternatives, and restricting the set of potential responses  (e.g., 

select from the following four options). As such, the working memory burden should be 
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reduced and the pot ential spe ech options limited. Even so, the high -reliability menu system 

evaluated in the current set of studies was associated with a level of cognitive workload 

similar to that obtained with  the speech-to-text system from Strayer et al., (2013) and the 

current Synthetic /Natur al compose + listen conditions . Recall that the high -reliability menu-

based interactions had no translation errors and therefore r epresent a best-case scenario. In 

the low -reliability system, with random errors introduced into the translatio n, the workload 

rose to 3.67, a level substantially higher than what was observed in the speech -to-text 

condition of Strayer et al., 2013 . When even the best-case scenario is associated with a 

relatively high level of workload, it suggests that the menu -based approach should be used 

with caution. For example, based on the limits of working memory capacity, the number of 

items in any given menu should nõt exceed four  or five,  and great care should be given to 

considerations of the usability of the system and the reliability of speech recognition , as 

workload increased systematically  with declines in subjective ratings of usability.  

 

How distracting are natural - language interfaces?    
 

Siri -based interactions involved using natural language to send and receive text messages, 

update Facebook or Twitter, and modify and review calendar appointments. To create a 

completely hands -free version, a lapel microphone was clipped to the participantõs collar and 

they activated Siri with the command òHello Siri ,ó at which point a researcher  manually 

activate the device . The participant neither looked at nor made physical contact with the 

iPhone during these interactions. Even so, the workload ratings exceeded category 4 on our 

workload scale  ð the highest ratin gs that we have observe d for any task short of OSPAN. 

Moreover, there were two crashes in the simulator study when participants used Siri (the 

only other crash we observed was when participants used the menu -based systems).  

 

To understand the workload ra ting associated with interacting with Siri, it is first useful to 

consider what is not causing the effect. The high level of workload is not due to 

visual/manual interference. Participants never looked at nor touched the iPhone during the 

session; in fact, the experimenter performed all  manual interaction with Siri. As such, this 

indicates that the impairments were cognitive in nature, associated with the alloca tion of 

attention to the task. The high level of workload is also not due to the quality of v ocal input 

or audio output. Participants wore a lapel microphone that allowed them to speak in a 

normal voice and the audio was played clearly over stereo speakers in the la b, simulator, or 

car. Our current research also indicates that the quality of the  synthetic speech was not a 

major contributor to the effect. As such, this suggests that the impairment was not 

attributable to input/output operations. However, as depicted in Figures A1 and A2  

(Appendix), Siri had the lowest rating of intuitiveness and the highest  rating of complexity 

of any of the conditions we tested.  

 

With regard to Siri, it is also useful to contrast it with the òbest caseó natural listen + 

compose condition, which was rated at 3.08, and used Wizard -of-Oz technology to achieve 

perfect speech recognition. Siri scored more than a full point higher on the workload rating 

scale (4.15), and this likely reflects the added complexity when the voice -recognition system 

is less than perfect. Siri can learn about accents and other the characteristics of the userõs 

voice, so it is possible that  with extended practice the workload ratings might  improve . 

Common issues involved inconsistencies in which Siri would produce different responses to  

seemingly identical commands. In other circumstances, Siri requi red exact phrases to 
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accomplish specific tasks , and subtle deviations from that phrasing would result in a 

failure. When there was a failure to properly dictate a message, it required starting over 

since there was no way to modify/edit a message or command.  Siri also made mistakes such 

as calling someone other than the desired perso n from the phone contact list. Some 

participants also reported frustration with Siriõs occasional sarcasm and wit. 

 

These and other idiosyncrasies resulted in an overly complex in teraction , and it is possible 

that improvements to the software design will  address some of these issues. There are other 

voice-recognition systems (e.g., Google Now, Microsoft Cortana, etc.) that were not tes ted in 

the current evaluation. It is possible that these systems differ in cognitive workload , 

resulting in variability much the same as what we observed with in -vehicle car commands, 

but additional research wil l be required to verify this. Even so, it is unlikely that the 

ratings of these voice -recognition systems would drop below 3, the level we obtained with a 

perfect speech recognition system.  

 

Caveats  and Limitations  
 

The cognitive distraction scale provides a comprehensive analysis of several of the cognitive 

sources of driver distraction . The scale does not directly measure visual/manual sources of 

distraction, although changes in visual scanning ass ociated with cognitive workload  are 

included  in the metric . Moreover , there is not a comprehensive mapping of cognitive 

distraction to on -road crash risk . However, i t is reasonable to assume that there would be a 

monotonic relationship between cognitive distraction and crash risk.   

 

Our  research examined participants between the ages 18 to 40 with a mean age of 25.3  and 

9.2 years of driving experience. It is likely that  older drivers may experience greater levels 

of workload because they find the  task of driving more attention demanding due to capacity 

and processing speed declines with senescence (Salthouse 1996; Strayer & Drews, 2004; 

West, 1996). Consequently, it is likely that the workload estimates provide a conservative 

estimate of the workload exper ienced by older drivers when they interact with the same in -

vehicle systems.  

 

Summary and Conclusions  

 

Measuring cognitive distraction has proven to be the most difficult of the three sources of 

distraction to assess because of the problems associated with observing what a driverõs 

brain (as opposed to hands or eyes) is doing. The current research used a combination of 

primary, secondary, subjective, and physiological measures to assess cognitive distraction 

across a variety of voice -based in-vehicle activities . We established that there are 

significant impairments to driving that stem from the diversion of attention from the task 

of operating a motor vehicle . The data suggest that voice -based interactions in the vehicle 

may have unintended consequences that adversely affect traffic safety.  
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Appendix  

 

Table 5. Standardized scores for each dependent measure . Note that the primary task 

measures of Brake RT and following distance (FD) were collected in Experiment 2, Glances 

at hazards were collected in Experiment 3, the secondary -task measures of DRT -RT and Aõ 

were collected in Experiments 1 -3, the NASA TLX subjective workload measures of m ental 

workload, physical workload, temporal demand, performance, effort, and frustration were 

collected in Experiments 1 -3, and the physiological measures of P3 Latency  (P3 Lat.)  was 

collected in Experiment s 1 and 2 and P3 Area measures were obtained in Experiments 1-2.  

Heart rate measures were collected in Experiments 1 -3. 
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Brake RT -.383 -.227 .043 -.118 -.048 .140 .220 .241 .132 

FD -.248 -.049 .017 -.060 -.028 .097 .135 .178 -.042 

DRT-RT -.660 -.214 -.117 -.168 .226 .141 .066 .175 .542 

DRT-Aô .300 .119 .093 .050 -.077 -.064 -.020 -.076 -.325 

Mental -.869 -.444 -.395 -.172 .403 .362 .015 .367 .733 

Physical -.415 -.237 -.224 -.033 .108 .125 .027 .258 .390 

Temporal -.570 -.479 -.192 -.120 .259 .234 -.018 .325 .561 

Performance -.330 -.262 -.259 -.223 .012 .022 -.183 .528 .696 

Effort -.682 -.423 -.402 -.284 .236 .155 -.060 .551 .908 

Frustration -.673 -.392 -.407 -.276 .050 -.044 -.219 .858 1.100 

P3 Lat. -.376 .085 -.518 .056 .217 .061 .083 .267 .126 

P3 Area .390 .321 .142 -.046 -.056 .005 -.043 -.225 -.489 

Heart Rate .008 -.042 -.036 -.035 .090 -.001 -.086 -.010 .112 
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Figure s Referenced in Text  

 

Figure 1. In text  

Figure 2. DRT RT (Experiments 1 -3) 

Figure 3. DRT Aõ (Experiments 1 -3) 

Figure 4. NASA-TLX (Experiments 1 -3) 

Figure 5. ERPs (Experiment 1)  

Figure 6. P3 Latency (Experiments 1 -2) 

Figure 7. P3 Amplitude (Experiments 1 -2) 

Figure 8. Heart Rate ð Beats per Minute ( Experiments 1-3) 

Figure 9. Brake RT (Experiment 2)  

Figure 10. Following Distance (Experiemnt 2)  

Figure 1 1. ERPs (Experiment 2)  

Figure 1 2. Effect size estimates compared to single -task  

Figure 1 3. In text   

Figure 1 4. Workload scale for St rayer et al., (2013)  (black bars) and the current research 

(red bars)  

Figure 1 5. Workload scale for Strayer et al., (2013) (black bars) and the current research 

(red bars) , and the companion research  using OEM infotaimnet systems (blue bars) 

Figure A1. Intuitiveness ratings on a 21 -point scale for the nine conditions  

Figure A2. Complexity ratings on a 21-point for the nine conditions  

Figure A3. Brake RT holding constant following distance  
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Figure 2. DRT RT (Experiments 1 -3) 

 

 

 
 
Figure 3. DRT Aõ (Experiments 1-3) 
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Figure 4. NASA -TLX (Experiments 1 -3) 



 

33 
 

 
 
Figure 5. ERPs (Experiment 1)  
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Figure 6. P3 Latency (Experiments 1 -2) 

 

 

 
 
Figure 7. P3 Amplitude (Experiments 1 -2) 
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Figure 8. Heart Rate ð Beats per Minute ( Experiments 1-3) 

 

 


